Vacuum curette lumbar discectomy mechanics for use in spine surgical training simulators | #education | #technology | #training


  • Sweet, R. The CREST simulation development process: training the next generation. J. Endourol. 31, S69–S75 (2017).

    Google Scholar 

  • Ruikar, D., Hegadi, R. & Santosh, K. A systematic review on orthopedic simulators for psycho-motor skill and surgical procedure training. J. Med. Syst. 42(168), 1–21 (2018).

    Google Scholar 

  • Cooper, J. & Taqueti, V. A brief history of the development of mannequin simulators for clinical education and training. Qual. Saf. Health Care 13, i11–i18 (2004).

    PubMed Central 

    Google Scholar 

  • Go, T., Bürki-Cohen, J. & Soja, N. The effect of simulator motion on pilot training and evaluation. Model. Simul. Technol. Conf. https://doi.org/10.2514/6.2000-4296 (2000).

    Article 

    Google Scholar 

  • Casutt, G., Theill, N., Martin, M., Keller, M. & Jäncke, L. The drive-wise project: Driving simulator training increases real driving performance in healthy older drivers. Front. Aging Neurosci. 6(86), 1–14 (2014).

    Google Scholar 

  • Alotaibi, F. E. et al. Utilizing NeuroTouch, a virtual reality simulator, to assess and monitor bimanual performance during brain tumor resection. Can. J. Neurol. Sci. 42(S1), S20–S20 (2015).

    Google Scholar 

  • Alotaibi, F. et al. Assessing bimanual performance in brain tumor resection with neurotouch, a virtual reality simulator. Neurosurgery 11, 89–98 (2015).

    Google Scholar 

  • Winkler-Schwartz, A. et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw. Open 2(e198363), 1–16 (2019).

    Google Scholar 

  • Nikolaidis, N., Marras, I., Mikrogeorgis, G., Lyroudia, K. & Pitas, I. Virtual dental patient: A 3D oral cavity model and its use in haptics-based virtual reality cavity preparation in endodontics. Dent. Comput. Appl. Adv. Tech. Clin. Dent. https://doi.org/10.4018/978-1-60566-292-3.ch018 (2008).

    Article 

    Google Scholar 

  • Klein, S., Whyne, C., Rush, R. & Ginsberg, H. CT-based patient-specific simulation software for pedicle screw insertion. J. Spinal Disord. Tech. 22, 502–506 (2009).

    Google Scholar 

  • Akhtar, K., Chen, A., Standfield, N. & Gupte, C. The role of simulation in developing surgical skills. Curr. Rev. Musculoskelet. Med. 7, 155–160 (2014).

    CAS 
    PubMed Central 

    Google Scholar 

  • Torkington, J., Smith, S., Rees, B. & Darzi, A. The role of simulation in surgical training. Ann. R. Coll. Surg. Engl. 82, 88–94 (2000).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kurashima, Y. et al. A novel low-cost simulator for laparoscopic inguinal hernia repair. Surg. Innov. 18, 171–175 (2011).

    Google Scholar 

  • Delorme, S., Laroche, D., Diraddo, R. & Del Maestro, R. NeuroTouch: A Physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71, 32–42 (2012).

    Google Scholar 

  • Wang, Q. et al. Haptic rendering of drilling process in orthopedic surgical simulation based on the volumetric object. In: Proceedings of the International Conference on Digital Signal Processing, DSP vol. 2015 1098–1101 (Institute of Electrical and Electronics Engineers Inc., 2015).

  • Fuerst, D., Hollensteiner, M. & Schrempf, A. Assessment parameters for a novel simulator in minimally invasive spine surgery. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 5110–5113 (2015). https://doi.org/10.1109/EMBC.2015.7319541.

  • Carfango, J. How osso VR is reshaping the surgical training process – docwire news. DocWire News https://www.docwirenews.com/docwire-pick/future-of-medicine-picks/how-osso-vr-is-reshaping-the-surgical-training-process/ (2019).

  • Luciano, C. et al. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery 72, 89–96 (2013).

    Google Scholar 

  • Instron. Modulus of Elasticity. https://www.instron.com/en/our-company/library/glossary/m/modulus-of-elasticity.

  • Ben-Ur, Z., Mijiritsky, E., Gorfil, C. & Brosh, T. Stiffness of different designs and cross-sections of maxillary and mandibular major connectors of removable partial dentures. J. Prosthet. Dent. 81, 526–532 (1999).

    CAS 

    Google Scholar 

  • Arruda, E. & Boyce, M. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Cardenas, R. et al. Comparison of allograft bone and titanium cages for vertebral body replacement in the thoracolumbar spine: A biomechanical study. Neurosurgery 66, 314–318 (2010).

    Google Scholar 

  • Okamura, A., Simone, C. & O’Leary, M. Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51, 1707–1716 (2004).

    Google Scholar 

  • Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of Mman as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  • Kopta, J. The development of motor skills in orthopaedic education. Clin. Orthop. Relat. Res. 75, 80–85 (1971).

    CAS 

    Google Scholar 

  • Sadideen, H., Alvand, A., Saadeddin, M. & Kneebone, R. Surgical experts: Born or made?. Int. J. Surg. 11, 773–778 (2013).

    Google Scholar 

  • Pang, X., Tan, H. & Durlach, N. Manual discrimination of force using active finger motion. Percept. Psychophys. 49, 531–540 (1991).

    CAS 

    Google Scholar 

  • Allin, S., Matsuoka, Y. & Klatzky, R. Measuring just noticeable differences for haptic force feedback: Implications for rehabilitation. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2002 299–302 (2002). https://doi.org/10.1109/HAPTIC.2002.998972.

  • Zoeller, A. & Drewing, K. A systematic comparison of perceptual performance in softness discrimination with different fingers. Attent. Percept. Psychophys. 82, 3696–3709 (2020).

    Google Scholar 

  • Omrani, M., Lak, A. & Diamond, M. Learning not to feel: Reshaping the resolution of tactile perception. Front. Syst. Neurosci. 7(29), 1–13 (2013).

    Google Scholar 

  • Vicentini, M. & Botturi, D. Perceptual issues improve haptic systems performance. In: Advances in Haptics (ed. Zadeh, M. H.) 415–438 (InTech, 2010). https://doi.org/10.5772/8711.

  • Corey, D. & Comeau, D. Cervical radiculopathy. Med. Clin. North Am. 98, 791–799 (2014).

    Google Scholar 

  • Edelson, J. & Nathan, H. Nerve root compression in spondylolysis and spondylolisthesis. J. Bone Joint Surg. 68, 596–599 (1986).

    CAS 

    Google Scholar 

  • Takahashi, K., Shima, I. & Porter, R. Nerve root pressure in lumbar disc herniation. Spine (Phila Pa 1976) 24, 2003–2006 (1999).

    CAS 

    Google Scholar 

  • Rubin, D. Epidemiology and risk factors for spine pain. Neurol. Clin. 25, 353–371 (2007).

    Google Scholar 

  • Hoy, D. et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 73, 968–974 (2014).

    Google Scholar 

  • Mobbs, R., Phan, K., Malham, G., Seex, K. & Rao, P. Lumbar interbody fusion: Techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J. Spine Surg. 1, 2–18 (2015).

    PubMed Central 

    Google Scholar 

  • Mobbs, R., Sivabalan, P., Li, J., Wilson, P. & Rao, P. Hybrid technique for posterior lumbar interbody fusion: A combination of open decompression and percutaneous pedicle screw fixation. Orthop. Surg. 5, 135–141 (2013).

    PubMed Central 

    Google Scholar 

  • Regan, J., Yuan, H. & McAfee, P. Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery: A prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine (Phila Pa 1976) 24, 402–411 (1999).

    CAS 

    Google Scholar 

  • Mo, F., Yuan, P., Araghi, A. & Serhan, H. Time savings and related economic benefits of suction-curette device for transforaminal lumbar interbody fusion discectomy. Int. J. Spine Surg. 12, 582–586 (2018).

    PubMed Central 

    Google Scholar 

  • Patwardhan, A., Havey, R., Meade, K., Lee, B. & Dunlap, B. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24, 1003–1009 (1999).

    CAS 

    Google Scholar 

  • Shan, Z. et al. Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings. Eur. Spine J. 24, 1909–1916 (2015).

    Google Scholar 

  • Hirsch, C. & Nachemson, A. New observations on the mechanical behavior of lumbar discs. Acta Orthop. Scand. 23, 254–283 (1954).

    CAS 

    Google Scholar 

  • La Barbera, L. et al. Load-sharing biomechanics of lumbar fixation and fusion with pedicle subtraction osteotomy. Sci. Rep. 11(3595), 1–13 (2021).

    Google Scholar 

  • El-Monajjed, K. & Driscoll, M. Analysis of surgical forces required to gain access using a probe for minimally invasive spine surgery via cadaveric-based experiments towards use in training simulators. IEEE Trans. Biomed. Eng. 68, 330–339 (2021).

    Google Scholar 

  • Mann, H. & Whitney, D. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kruskal, W. & Wallis, W. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    MATH 

    Google Scholar 

  • Gibbons, J. & Chakraborti, S. Spearman’s coefficient of rank correlation. In: Nonparametric Statistical Inference (ed. Dekker, M.) 422–432 (2003).

  • BenSaïda, A. Shapiro-Wilk and Shapiro-Francia normality tests. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests (2021).

  • Matsuoka, Y., Brewer, B. & Klatzky, R. Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation. J. Neuroeng. Rehabil. 4(17), 1–9 (2007).

    Google Scholar 

  • Ledwos, N. et al. Virtual reality anterior cervical discectomy and fusion simulation on the novel sim-ortho platform: validation studies. Oper. Neurosurg. 20, 74–82 (2021).

    Google Scholar 



  • Original Source link

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Leave a Reply

    Your email address will not be published.

    18 + = nineteen